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Asthma is characterized by T helper cell 2 (Th2) type inflammation, leading to airway hyperresponsiveness
and tissue remodeling. Th2 cell-driven inflammation is likely to represent an abnormal response to harmless
airborne particles. These reactions are normally suppressed by regulatory T cells, which maintain airway
tolerance. The anti-inflammatory cytokine IL-10 is likely to play a central role. The role of the cytokine trans-
forming growth factor b (TGF-b) is more complex, with evidence for immune suppression and remodeling in
the airways. In asthmatic individuals there is a breakdown in these regulatory mechanisms. There is emerging
evidence that early life events, including exposure to allergen and infections, are critical in programming
effective regulatory pathways to maintain pulmonary homeostasis. In this review we examine the clinical
and experimental evidence for T regulatory cell function in the lung and discuss the events that might
influence the functioning of these cells. Ultimately, the ability to enhance regulatory function in affected
individuals may represent an effective treatment for asthma.
The Lung as a Unique Mucosal Site
The lung represents a unique mucosal environment, which is

specialized to meet the requirements for its primary function of

gaseous exchange. This includes a large surface area exposed

to the external environment, which is continuously exposed to

airborne antigens, many of which although immunogenic do

not usually pose a threat to the host, e.g., allergens. In order to

prevent the continual induction of de novo immune responses

and stimulation of memory effector cells, which would support

chronic inflammation in the airways and damage to the epithelial

barrier and would impair gaseous exchange, a number of

specialized control mechanisms exist. An absolute requirement

is that these mechanisms discriminate harmless airborne anti-

gens entering via the airways from pathogens.

Given these risks, it is not surprising that multiple interactions

between leukocytes and cells of the lung stroma are central to

this process of homeostatic pulmonary regulation. The epithe-

lium plays a central role via the production of molecules such

as mucins, surfactants, complement products, and antimicrobial

peptides (reviewed in Holt et al., 2008). In addition, a unique pop-

ulation of macrophages termed alveolar macrophages, which

reside outside the body in the airway spaces, are likely to play

an important role. These exhibit potent phagocytic and antimi-

crobial functions (Holt et al., 2008). They are likely to play a major

role in sequestering antigens from dendritic cells, but have also

been proposed to be immunosuppressive, dampening down

local dendritic and T cell activation (Holt et al., 2008).

Regulatory T cells (Treg cells) are essential in the maintenance

of immunological tolerance to ‘‘self’’ and in the regulation of the

immune response to infectious organisms, both pathogens and

commensals. Furthermore, Treg cells represent a major pathway

proposed to contribute to the maintenance of immune homeo-

stasis in the airways. Major populations of regulatory T cells

studied in the context of pulmonary health and asthma are the

natural thymic-derived CD4+Foxp3+ Treg cells and peripherally

antigen-induced adaptive CD4+ Treg cells, which comprise

both Foxp3-positive and -negative populations (Hawrylowicz
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and O’Garra, 2005; Roncarolo et al., 2006). Peripheral induction

of Treg cells may represent an important mechanism to generate

Treg cells with specificity for exogenous antigens, such as aller-

gens, as well as to maintain Treg cell populations with age.

A number of different mechanisms by which antigen-specific

Treg cells inhibit the function of effector T cells, antigen-present-

ing cells, and innate cells have been described (reviewed in

Vignali et al., 2008). A prominent inhibitory mechanism appears

to be via anti-inflammatory cytokines such as IL-10 and TGF-b

(Li et al., 2006; O’Garra et al., 2008), but inhibitory molecules

such as CTLA-4 and PD1 are also likely to contribute (Vignali

et al., 2008). Although considerable focus has been placed on

CD4+ Treg cells, any cell with the capacity to secrete inhibitory

cytokines may have ‘‘regulatory’’ potential, including CD8+

T cells, NK cells, gd T cells, B cells, mast cells, and various

APC populations (O’Garra et al., 2008). The different Treg cell

populations, their lineage development, and mechanisms of

actions have been discussed in a recent series of reviews in

this journal (May 2009). Instead of these topics, the present

article will highlight regulatory T cell function with relevance to

the respiratory environment. It seems probable that primary

functions of Treg cells in the airways are to limit the inflammatory

consequences of infection and to maintain tolerance to harm-

less, inhaled aeroallergens.

Asthma
The incidence of asthma has increased dramatically in recent

decades, with the greatest prevalence observed in developed

countries. Currently there are an estimated 300 million asth-

matics worldwide, with 5 million asthmatics in the UK alone,

one of the highest rates worldwide (Masoli et al., 2004). Asthma

is a chronic inflammatory disease of the airways associated with

airway hyperresponsiveness (AHR), coupled with wheezing,

breathlessness, chest tightening, and coughing. Characteristi-

cally, the obstruction of the airways is reversible, either sponta-

neously or with treatment. There is a strong genetic association

with atopy, the predisposition to produce IgE antibodies to
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environmental allergens. Major cellular components driving

asthmatic reactions include mast cells, eosinophils, and

T cells, with a prominent role for CD4+ Th2 cells. More recently,

roles for basophils, iNKT cells, Th17 cells, and a number of

soluble mediators, including TSLP, IL-25, and IL-33, have also

been proposed (reviewed in Barrett and Austen, 2009, this issue

of Immunity). Even in patients, often older individuals, with non-

atopic or intrinsic disease there is good evidence for involvement

of similar biological mechanisms and Th2 cells. Asthma is also

associated with structural changes in the airways that include

hyperplasia of the epithelium, mucus metaplasia, and increased

airway smooth muscle mass and increased deposition of extra-

cellular matrix proteins. Importantly, these structural abnormali-

ties can be observed even in preschool children with wheeze

(Martinez et al., 1995; Saglani et al., 2007).

Currently, the major therapies used to control asthma are

glucocorticoids, with or without beta 2 agonists. These have

broad-ranging anti-inflammatory actions in controlling disease

symptoms but fail to provide a cure. Importantly they do not

prevent long-term decline in lung function. The reasons for the

therapeutic interest in Treg cells for more effective treatment of

asthma are the subject of the present review and arise from

evidence that Treg cells are important in maintaining immune

homeostasis in the airways and that their function may be altered

in asthmatic disease. Furthermore, certain therapies associated

with the amelioration of disease symptoms, including allergen

immunotherapy, glucocorticoids, and beta 2 agonists, may

promote or enhance Treg cell activity. These data highlight the

therapeutic interest in promoting Treg cell function for patient

benefit in asthma. Treg cell-directed therapies currently under

investigation encompass adoptive cell transfer therapies, strate-

gies investigated in the context of autoimmune disease, and

transplantation and strategies to boost endogenous Treg cells,

which represents a major focus of research for clinical applica-

tion of Treg cells in allergic diseases, including in asthma (Riley

et al., 2009).

Importance of Early Life Events in Programming
the Immune System and Effect on Disease Development
Ninety percent of asthmatics are diagnosed by 6 years of age.

Although asthma is difficult to diagnose before this age, atopic

diseases and viral wheezing illnesses in infancy synergistically

increase the risk for and are predictive of subsequent childhood

asthma (Morgan et al., 2005; Sly et al., 2008). These data imply

that early life events are highly predictive for the development

of protective regulatory mechanisms within the pulmonary

immune system. Indeed, evidence exists that Treg cells are

already impaired in the cord blood of neonates at hereditary

risk of allergy (Haddeland et al., 2005; Smith et al., 2008).

Recurrent wheezing is a common symptom during infancy and

early childhood. Those with persistent wheezing develop

abnormal lung function during their early years, which persists

through to early adulthood (Morgan et al., 2005). Biopsies from

asthmatic children show evidence of inflammation and structural

abnormalities. Although not every child with wheezing will

develop asthma, recurrent wheezing during the first 3 years of

life is considered a major risk factor, particularly if there is a

parental history of asthma. The majority of the wheezing lower

respiratory tract illnesses of childhood are caused by viruses,
so it has been postulated that early exposure to viruses has

lasting effects on the shaping of pulmonary immune responses

and are thus a risk factor for developing asthma (Martinez

et al., 1995; Sly et al., 2008). In contrast, the ‘‘hygiene hypoth-

esis’’ proposed that early childhood infections inhibit the

tendency to develop allergic disease and early infection is thus

protective. Epidemiologic evidence seems to support this with

living in a developing country, having several older siblings, early

attendance at day care, and exposure to livestock all being asso-

ciated with a lower incidence of allergic disease and this has

been linked with the development of regulatory pathways

(Bach, 2002). However, most of the evidence relates to protec-

tion against atopy and atopic diseases rather than asthma itself.

Whether infection is beneficial or harmful for the development of

asthma, it is clear that its influence is likely to be highly depen-

dent on both the timing and nature of the infection with critical

implications in the programming of the immune system.

There is evidence that prenatally, and even preconception,

environmental factors may influence the development of the

neonatal immune system, because prenatal exposure to a

farming environment influences innate immune patterning.

Maternal exposure during pregnancy to an environment rich in

microbial compounds was associated with higher expression of

Toll-like receptors 2 and 4 (TLR2 and TLR4) and CD14 on periph-

eral blood cells, implying that exposure might prevent sensitiza-

tion of the children (Ege et al., 2006). More directly, farm exposure

during pregnancy is associated with increased number and func-

tion of regulatory T cells within cord blood as well as reduced Th2

cytokine production and lymphocyte proliferation after innate

restimulation (Schaub et al., 2008). Studies in mice have shown

that exposure of mothers to endotoxin prevents subsequent

allergen-induced sensitization and airway inflammation in the

pups (Gerhold et al., 2006). Moreover, immunologic tolerance

can be transferred from mother to her offspring if the mother is to-

lerized before pregnancy, implying that even before conception

the immune status of the mother is critical in defining the immune

response of the offspring to allergens (Polte et al., 2008).

In addition to infection and exposure to aeroallergens, environ-

mental pollution and diet (Hollingsworth et al., 2008; Miller, 2008;

Litonjua and Weiss, 2007) have recently been highlighted to influ-

ence the development of disease in early life. Reduced maternal

intake of vitamins D and E and zinc during pregnancy have all

been associated with enhanced asthma symptoms in children

(Litonjua and Weiss, 2007; Willers et al., 2008). Vitamin D in

particular has been implicated in the development or mainte-

nance of both Foxp3+ and IL-10+ Treg cells in humans and

mice (Penna et al., 2005; Urry et al., 2009; Adorini and Penna,

2008). Furthermore, a recent study has shown that dietary

factors can also modify the risk of allergic airway disease via

epigenetic mechanisms (Hollingsworth et al., 2008). Mice given

a diet rich in methyl donors, such as folic acid or vitamin B12, re-

sulted in enhanced allergic airway disease that was inherited

over multiple generations. This prenatal methyl-rich diet was

postulated to promote DNA methylation and reduce transcrip-

tional activity of genes associated with downregulation of

allergic immune responses, such as Runx3. Prenatal maternal

exposure to diets high in folates, vitamin B12, choline, and

methionine—all of which provide methyl donors—as well as to

cigarette smoke may repress gene transcription and promote
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 439
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asthma phenotypes (Miller, 2008). Although these studies have

implicated regulatory factors such as IL-10 and TGF-b in the

altered immune programming of the lung, there is little direct

evidence that specific regulatory T cell populations are actually

affected. In contrast, a recent elegant study examined neonatal

diet, asking whether exposure of lactating mice to an airborne

allergen affected development of allergic airway disease in their

progeny (Verhasselt et al., 2008). Airborne antigens were trans-

ferred efficiently via breast milk and this transfer resulted in

tolerance and protection from allergic asthma. Moreover, this

breastfeeding-induced tolerance was dependent on the pres-

ence of TGF-b during lactation and was mediated by regulatory

CD4+ T cells, which signaled via TGF-b. These data provide a

mechanism underlying tolerance provided by breastfeeding

neonates and underpins the importance of maternal influences

on the development of regulatory mechanisms in the neonate,

which ultimately affect the development of allergic symptoms.

Evidence that Treg Cells Influence Pulmonary
Homeostasis
A primary requisite of the pulmonary tract is to maintain tolerance

in the face of continuous exposure to potential antigens. Early

experimental studies have highlighted the fact that antigens

entering via the respiratory route generally induce tolerance or

weak Th2 cell responses (Holt et al., 2008). Although many of

these studies do not specifically highlight the induction of Treg

cells, it is now commonly accepted that Treg cells represent a

major mechanism of peripheral tolerance. An important role for

the anti-inflammatory cytokine IL-10, from both innate cells

and Treg cells, is also increasingly believed to play a central

role (Hawrylowicz and O’Garra, 2005).

In the early 1980s, Holt et al. (1981) demonstrated that expo-

sure of mice to aerosolized ovalbumin (OVA) intranasally in the

absence of adjuvant elicited transient IgE responses, which

subsequently declined. When the animals were challenged intra-

peritoneally with OVA, their subsequent IgE responses were

markedly suppressed relative to controls. The authors postu-

lated a role for relatively long-lived antigen-specific suppressor

cells that could transfer inhibition of the IgE response to other

animals (Holt et al., 1981). More recently, tolerance induction in

the airways in animal models has been correlated more specifi-

cally with the induction of regulatory T cells. Repeated exposure

of mice to low-dose allergen promoted the development of

a regulatory CD4+ T cell population that expressed membrane-

bound TGF-b and Foxp3. Adoptive transfer of these cells to

naive mice prevented allergic sensitization (Ostroukhova et al.,

2004). A higher dose of inhaled allergen stimulated the develop-

ment of a T regulatory cell population that secreted high amounts

of IL-10 (Akbari et al., 2002). This particular study highlights the

involvement of respiratory accessory cells in promoting toler-

ance and/or Treg cell induction. Repeated exposure of mice to

inhaled antigen stimulated pulmonary DCs to produce IL-10,

which were then able to induce the development of IL-10-

producing Treg cells. Critically, transfer of the IL-10-producing

dendritic cells prevented development of allergic inflammation

after subsequent allergen challenge of recipient mice. It is how-

ever important to note that peptide inhalation studies in humans

after sensitization had already occurred failed to promote respi-

ratory tolerance (Ali et al., 2004).
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Structural cells in the airways are likely to play an active role in

mediating pulmonary immune responses to inhaled antigens.

Alveolar epithelial cells can present antigen and promote devel-

opment of Foxp3+ cells via a TGF-b-dependant mechanism in

mice (Gereke et al., 2009). Moreover, airway epithelial cells are

able to initiate specific tolerogenic mechanisms on exposure to

proteinase allergen. Retinal dehydrogenase 1 (RALDH-1), an

enzyme involved in the production of retinoic acid, is induced

and promotes the development of immunosuppressive regula-

tory T cells (Goswami et al., 2009). In vivo this enzyme is regu-

lated by epithelial-derived MMP-7, and a deficiency in MMP-7

results in enhanced T regulatory cells in the lung accompanied

by an attenuated response to allergen challenge. Although there

is less direct evidence of a role for alveolar macrophages (AM) in

specifically influencing T regulatory cell pathways, their role in

suppression of over-exuberant immune responses in the lung

has been postulated (Holt et al., 2008). In vitro evidence suggests

that AM can actively tolerise CD4+ T cells in an antigen-specific

manner, implying that they mediate a form of immune privilege in

the lungs that effectively limits immune responses in the pulmo-

nary compartment but has little effect on systemic immunity

(Blumenthal et al., 2001). Resident dendritic cells are also vital

in controlling pulmonary immune responses. In particular, plas-

macytoid dendritic cells limit immune responses to harmless

inhaled allergens in mice (see Lambrecht, 2009, review in this

issue). It seems likely that there is cooperation between these

different populations of lung-resident cells as well as those of

the immune system in order to promote pulmonary immune

homeostasis.

Delivery of foreign antigens to the airways, in the presence of

TLR signaling, has been shown to preferentially induce Th2 cell-

mediated responses in humans and in mice. Whereas at other

sites such signaling drives Th1 cell responses, only high amounts

of LPS with antigen results in Th1 cell responses (Eisenbarth

et al., 2002). Conversely, TLR signaling, both directly and indi-

rectly, can impair Treg cell function and is postulated to allow

the more efficient clearance of pathogens (Sutmuller et al.,

2006; Urry et al., 2009). These data imply that in susceptible indi-

viduals the combination of exposure of the lungs to pathogens in

conjunction with allergens affects the programming of the

pulmonary immune system, which in turn might precipitate an

inappropriate response to allergen.

Immune homeostasis in the lung is achieved by the balance in

inflammatory and modulatory cytokines (Figure 1). IL-10 is a

potent anti-inflammatory cytokine and its production by a wide

range of cell types has been described, including B cells, macro-

phages, dendritic cells, mast cells, and eosinophils (O’Garra

et al., 2008). Many T cell subsets synthesize IL-10, including

CD8+ T cells, CD25+Foxp3+ Treg cells, and effector CD4+

T cell populations, namely Th1 cells, Th2 cells, and Th17 cells.

Of note, two subsets of Th2 cells have been described, IL-10-

producing regulatory Th2 cells, and TNF-a-producing inflamma-

tory Th2 cells (Ito et al., 2005). IL-10 production by effector T cells

is likely to be important in limiting their inflammatory potential

(O’Garra et al., 2008). A wealth of studies in animal models has

proposed a protective role for IL-10 in the maintenance of respi-

ratory homeostasis. IL-10 production by innate cells and

antigen-specific T cells in the respiratory tract has been shown

to limit inflammation in response to both viral and bacterial
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Figure 1. Regulatory Pathways Maintain
Lung Homeostasis
The lung is maintained in a state of homeostasis by
a complex network of cells and molecules. IL-10
plays a central role in this process, but the role of
TGF-b is less clear at present. Exposure of
susceptible individuals to allergen is associated
with a Th2 cell type immune response character-
ized by IL-4, IL-5, IL-13, and TNF, which culmi-
nates in leukocyte infiltration of the lungs. The
development of this inflammation is influenced
by multiple factors, but early childhood infection,
diet, vitamin D, and TLR ligand expression all
affect the initiation and development of the allergic
response. In a proportion of individuals, inflamma-
tion is chronic and associated with significant
remodeling of the airways. IL-10 and TGF-b are
thought to be able to promote resolution of inflam-
mation whereas TFG-b family members initiate
tissue repair and remodeling. Induction of TGF-b
by Th2 cytokines during acute inflammation may
also contribute to lung remodeling. Whether
chronic asthma develops as a result of ineffective
inflammatory resolution or as an aberrant wound
healing response is the subject of investigation,
but it is likely that IL-10 and TGF-b are key media-
tors.
pathogens (Higgins et al., 2003; Sun et al., 2009). Studies in

adults demonstrate that rhinovirus-induced lower respiratory

tract illness, a virus associated with asthma-promoting wheeze

in infants and exacerbations in adults, is associated with

reduced IL-10 production and augmented Th2 cell immunity

(Message et al., 2008). Il10�/� outbred mice exhibited exagger-

ated airway inflammation and heightened expression of IL-5 and

IFN-g in bronchoalveolar lavage (BAL) fluids in allergic broncho-

pulmonary aspergillosis (Grunig et al., 1997). Interleukin-10 gene

transfer to the airway prevents allergic mucosal sensitization in

mice suppressing cellular recruitment and inflammation (Stamp-

fli et al., 1999). Intranasal instillation of IL-10 into airways at time

of allergen challenge inhibited leukocyte recruitment (Zuany-

Amorim et al., 1995), and T cells expressing IL-10 inhibit allergic

airway disease (Oh et al., 2002). As discussed below, many

human and mouse studies propose a prominent role for T cell-

derived IL-10 as an important mediator of immunological toler-

ance in the airways.

Experimental Evidence for Treg Cell Function
in Allergic Airway Disease
Mouse models of allergic airway disease have long been used to

dissect the immunological mechanisms underlying the patho-

physiological features of asthma (Lloyd, 2007; Hawrylowicz

and O’Garra, 2005). Adoptive transfer of antigen-specific

CD4+CD25+ T regulatory cells was found to suppress allergic

inflammation and hyperreactivity via a mechanism dependent

upon IL-10 (Kearley et al., 2005). Moreover, although IL-10 was

vital for suppression to occur, the IL-10 was induced from

bystander CD4+ cells rather than the CD4+CD25+ T regulatory

cells themselves. Importantly, when delivered after the onset of

disease, T regulatory cells were able to downregulate estab-

lished inflammation and prevent airway remodeling (Kearley

et al., 2008). Conversely, depletion of CD4+CD25+ T regulatory

cells before sensitization is enough to enhance the severity of
inflammation and AHR in the lung (Lewkowich et al., 2005).

Depletion of CD25+ T cells resulted in increased numbers of

airway dendritic cells with higher expression of activation

markers and enhanced potential to promote effector T cell prolif-

eration. Airway regulatory cells do not need to be antigen

specific for in vivo suppression (Leech et al., 2007); however,

they appear rapidly after antigen exposure (Strickland et al.,

2006). Collectively, these data suggest that T regulatory cells

restrain dendritic cell function in the lung, resulting in suppres-

sion of inappropriate immune responses.

IL-10 has been found to be essential for effective suppression

of allergic responses in the lung (Joetham et al., 2007; Kearley

et al., 2005; Leech et al., 2007). This dependence on IL-10 high-

lights an important feature of T regulatory cell control of pulmo-

nary immune responses. Although IL-10 is not required for

control of systemic autoimmunity, it is absolutely required for

restraint of immune responses at mucosal surfaces such as

the gut or lung (Rubtsov et al., 2008). Mice with a targeted dele-

tion of IL-10 specifically in regulatory (Foxp3+) T cells develop

spontaneous colitis and showed enhanced AHR and inflamma-

tion after exposure to inhaled allergen. These data highlight the

unique and complex interplay of regulatory systems functioning

at mucosal sites with the effector T cells and indicate that T regu-

latory cells utilize multiple pathways to control inflammatory

responses and the location and environment dictate which

particular pathway is employed.

The appropriate localization of regulatory cells is important for

their function because they may exert their suppressive activity

via cell-cell contact as well as via cytokine secretion. In vivo

homing studies have determined that the chemokine [C-C motif]

receptor 4 (CCR4) is essential for the recruitment of CD4+Foxp3+

regulatory cells. Recruitment of Treg cells to the lung is impaired

in the absence of CCR4 (Sather et al., 2007). Moreover, mice with

a complete loss of CCR4 in the Treg cell compartment develop

lymphocytic infiltration and severe inflammatory disease of the
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 441
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airways. This finding is intriguing because CCR4 is also the

primary chemokine receptor responsible for recruitment of

allergen-specific Th2 cells to the lung (Lloyd et al., 2000).

CD4+CD25+ Treg cells from human donors have been shown

to preferentially express CCR4 and migrate to the CCR4 ligands

CCL17 and CCL22 (Iellem et al., 2001). Adoptive transfer studies

have also highlighted a role for CCR4 ligands CCL17 and CCL22

in the recruitment and retention of CD4+CD25+ Treg cells to the

lung during chronic allergen challenge (Kearley et al., 2008).

Retention in the airways is also thought to be dependent upon

continued antigen exposure. Maintenance of protective T regu-

latory cell activity was absolutely dependent upon continued

allergen exposure because interruption of allergen challenge

resulted in a reduction in Treg cell activity concomitant with

resurgence in Th2 cell type pathology (Strickland et al., 2006).

This occurs in human systems too, with beekeepers showing

an in vivo switch to a IL-10-secreting phenotype during the

beekeeping season, which wanes during periods of nonexpo-

sure (Meiler et al., 2008).

Prevention of inappropriate immune responses to harmless

antigens is one of the primary functions of regulatory T cells,

and the decision as to whether an immune response is initiated

or not is critical to maintain host defense. Recent evidence

suggests that effector and Treg cell function is closely linked.

Naturally occurring Treg cells are thought to be able to suppress

inflammatory responses during the later stages of infection in

order to prevent collateral tissue damage. However, the absence

of Treg cells during mucosal viral infection results in uncontrolled

inflammation and early death, because of delayed migration of

effector cells to the inflammatory site (Lund et al., 2008). These

data suggest that Treg cells control recruitment of effector cells

to sites of inflammation, including the airways and coordinate

effective immune responses at early as well as later stages.

Treg cells may restrain effector responses in other ways too. In

mouse Treg cells, high amounts of interferon regulatory factor-

4 (IRF4), a transcription factor essential for Th2 effector cell differ-

entiation, is dependent on Foxp3 expression. Ablation of a condi-

tional Irf4 allele in Treg cells resulted in selective dysregulation of

Th2 cell responses, suggesting that expression of IRF4 in some,

as yet undefined, way endows Treg cells with the capacity to

inhibit Th2 cell responses (Zheng et al., 2009). These data further

highlight a close link between Treg and T effector cells.

Genetic and Clinical Evidence for the Role
of Treg Cells in Promoting Lung Health
Some of the most persuasive evidence for the importance of

Treg cells in prevention of allergic diseases in early life in

humans, prior to the onset of asthma, comes from genetic muta-

tion studies. Foremost among these are studies of children with

immune dysregulation polyendocrinopathy enteropathy X-linked

(IPEX) syndrome. Treg cells stably expressing the forkhead box

protein P3 transcription factor, Foxp3, are generated in the

thymus and released into the circulation as lineage-specific

CD4+CD25+Foxp3+ T cells. Many children with IPEX exhibit

mutations in Foxp3 and have absent or reduced numbers of

CD4+CD25hi Treg cells or lack functional CD4+CD25hi Treg cells.

At least 22 different mutations in the Foxp3 gene have been

described to date with many in the DNA binding region (Bac-

chetta et al., 2006; reviewed in Zheng and Rudensky, 2007;
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Torgerson and Ochs, 2007). IPEX presents at very early age

and can be detected within a few days of birth, as a syndrome

associated with autoimmunity, allergy, and failure to thrive. It is

generally fatal, in many cases within the first year of life resulting

from recurrent infection, without bone marrow transplantation or

profound immunosuppression (Chatila et al., 2000; Torgerson

and Ochs, 2007). The only curative approach for IPEX is alloge-

neic hematopoietic stem cell transplantation (HSCT), and a

recent study suggests that a patient remaining healthy at 5 to

6 years after nonmyeloablative HSCT demonstrated Foxp3

expression and numbers of CD4+CD25hiCD127loFoxp3-

expressing cells of donor origin at low-normal range (Rao

et al., 2007; Seidel et al., 2009). Although autoimmune manifes-

tations have been most prominently reported, these boys suffer

from severe eczema, elevated IgE titers, eosinophilia, and food

allergy (Chatila et al., 2000). Both resting PBMC and cells stimu-

lated in culture are skewed toward a Th2 phenotype with high

amounts of IL-4, IL-5, and IL-13. These studies suggest that

Foxp3+CD25hi Treg cells play a prominent role in the prevention

of allergic sensitization in early life.

The Scurfy (sf) mouse lacks CD4+Foxp3+ regulatory T cells,

caused by a mutation of the X-linked transcription factor

Foxp3 resulting in aggressive fatal autoimmune disease (re-

viewed in Zheng and Rudensky, 2007; Torgerson and Ochs,

2007). However, mice with a targeted loss-of-function mutation

in the murine Foxp3 gene by targeted mutagenesis may provide

a better model of the human disease. They demonstrate an

intense multiorgan inflammatory response associated with

allergic airway inflammation, a striking hyperimmunoglobuline-

mia E, eosinophilia, and dysregulated Th1 and Th2 cytokine

production, albeit in the absence of overt Th2 cell skewing, reca-

pitulating the human condition, IPEX, associated with Foxp3

mutation (Lin et al., 2005).

Up to one third of patients with IPEX may not have mutations in

Foxp3 (Gambineri et al., 2003). At least two studies (Roifman,

2000; Caudy et al., 2007) have reported a variant of IPEX, where

patients presented with IL-2 receptor alpha chain (CD25) defi-

ciency, and certainly in the later study a normal Foxp3 gene.

That study directly compared two patients, one with CD25

deficiency and the other with a Foxp3 mutation, concluding

that both presented with an IPEX-like syndrome. CD4+ T cells

from the CD25 subject demonstrated defective IL-10 production

after in vitro stimulation (Caudy et al., 2007) and went on to

develop, among a range of abnormalities, recurrent pulmonary

infections and asthma. Somewhat unexpectedly, the Foxp3-

deficient patient showed normal expression of IL-10. These

studies imply essential and nonredundant roles for both

Foxp3+ Treg cells and IL-10+ Treg cells in the prevention of

allergic and asthmatic disease.

A number of studies in humans have investigated evidence for

impaired Foxp3 Treg cell function in allergic and asthmatic

disease (Ryanna et al., 2009; Ling et al., 2004). The interpretation

of many of these studies, however, is hampered by the fact that

Treg cells were defined on the basis of CD4 and CD25 expres-

sion and not Foxp3 expression. In some cases, the data could

also be interpreted as an increase of activated T effector cells,

as for example where Treg cells are defined on the basis of

CD25 expression and the greatest degree of impairment is

seen in active disease. Similarly, because most studies
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assessed Treg cell numbers and function in the peripheral blood,

they failed to account for the possible migration of Treg cells into

recently activated, inflamed tissues. A study in pediatric lung and

blood in children demonstrated impaired CD4+CD25hi T cell

numbers and function as well as reduced Foxp3 mRNA in the

lung (but not peripheral blood) in the asthmatic subjects in

comparison to children with cough but not asthma (Hartl et al.,

2007). More recently, a study suggests that asthmatic patients

have normal peripheral blood numbers of CD4+CD25hi and

CD4+CD25hi Foxp3+ Treg cells compared to healthy donors,

but Foxp3 protein expression is decreased (Provoost et al.,

2009), although the functional consequences of this were not

explored. Conversely, evidence to suggest that Treg cells

actively prevent Th2 cell responses to allergen in healthy donors

also exists. For example increased responses to allergen, both

proliferative and Th2 cytokine responses, are observed in the

peripheral blood of healthy nonatopic donors after the depletion

of CD4+CD25+ T cells from PBMC as compared to undepleted

PBMC cultures (Ling et al., 2004). These data highlight the need

for further studies in human pediatricandadult respiratory tissues.

IL-10—A Critical Controller in Asthma
IL-10 has broad immunosuppressive and anti-inflammatory

actions relevant to the inhibition of asthma pathology (O’Garra

et al., 2008). It is a potent inhibitor of proinflammatory cytokine

production and acts on antigen-presenting cells to dampen

T cell activation, including Th2 cells. It inhibits effector cells asso-

ciated with both the early- and late-phase asthmatic response,

mast cells, and eosinophils. IL-10 promotes IgG4 production,

an immunoglobulin isotope generally believed to be protective

in the context of allergic responses. It also inhibits IgE and results

in favorable ratios of IgG4 to IgE; this Ig balance is associated

with health and tolerance induced after allergen immunotherapy

(Till et al., 2004).

A number of studies in humans have investigated IL-10

synthesis in allergic and asthmatic patients as compared to

healthy individuals. A substantial reduction in IL-10 mRNA and

protein and increased amounts of proinflammatory cytokines

was reported in the bronchoalveolar lavage fluid and in alveolar

macrophages of patients with asthma as compared to control

healthy subjects (John et al., 1998). A polymorphism in the

IL10 gene promoter resulting in reduced IL-10 expression is

associated with more severe disease (Lim et al., 1998). Similar

inverse correlations of reduced IL-10 synthesis by CD4+ T

lymphocytes have been reported in relation to atopic status

(Akdis et al., 2004). An important study by Akdis et al. demon-

strated that there was a substantial increase in the frequency

of allergen-responsive IL-10-positive T cells in the peripheral

blood of healthy nonatopic individuals as compared to allergic

patients, who demonstrated reduced IL-10+ and increased

IL-4+ allergen-responsive T cells (Akdis et al., 2004). Conversely,

natural immune tolerance in nonatopic individuals, specifically

beekeepers in whom seasonal exposure to bee stings is impor-

tant to maintain tolerance, is associated with increased venom-

allergen-specific IL-10+ CD4+ T cells (Meiler et al., 2008).

Importance and Complexity of TGF-b

TGF-b is a pleiotropic cytokine that regulates lymphocyte

homeostasis, inhibits Th2 and Th1 cell responses, promotes
the differentiation of certain T cell lineages, inhibits IgE, and

promotes IgA production (Li et al., 2006). The complete absence

of TGF-b in mice results in early death from multiorgan inflamma-

tion (Shull et al., 1992), highlighting a crucial role in peripheral

tolerance. However, heterozygous mice express lower amounts

of TGF-b1 and are viable. After allergen sensitization and chal-

lenge, they exhibit exacerbated airway disease compared to

wild-type animals, suggesting a role for endogenous TGF-b in

suppressing the development of allergic airway disease (Scherf

et al., 2005).

Intratracheal delivery of TGF-b suppresses allergen-induced

inflammation (Joetham et al., 2007) whereas CD4+ T cells engi-

neered to secrete latent TGF-b efficiently suppress allergen-

specific airway inflammation and hyperresponsiveness (Hansen

et al., 2000). Blocking TGF-b signaling specifically in T cells also

results in enhanced airway hypersensitivity, airway inflammation,

and increased Th2 cytokine production (Nakao et al., 2000).

Collectively, these data reinforce the idea that TGF-b acts to

regulate immune responses in the lung and that perturbations

in the degree of expression of either the cytokine, its receptor,

or even molecules within its signaling pathway have severe

consequences for maintenance of pulmonary homeostasis.

TGF-b also induces the peripheral expression of the transcrip-

tion factor FoxP3, which promotes the generation of CD4+CD25+

Treg cells able to inhibit allergic airway disease (Chen et al.,

2003). Although TGF-b has been implicated in CD4+Foxp3+

Treg cell control of allergic airway disease in at least two studies

(Ostroukhova et al., 2004; Joetham et al., 2007), the majority of

studies have described a central role for IL-10, with or without

TGF-b in the control of allergic airway inflammation. This con-

trasts with studies in the gut where naturally occurring TGF-b-

secreting Treg cells are present and play a vital nonredundant

role in regulation mucosal immune responses (Barnes and Pow-

rie, 2009, review in this edition) and may reflect the fact that the

lower airways represent a sterile environment whereas the gut is

not. Cooperation between IL-10 and TGF-b is likely to be impor-

tant in the regulation of pulmonary mucosal immune responses.

TGF-b influences the lineage specificity of effector T cell

subsets. It is instrumental in driving the RORgT-dependent

differentiation pathway in CD4+ T cells, resulting in either Th17

or Treg cells depending on the concurrent presence of matura-

tion and polarization factors such as IL-6, IL-21, retinoic acid,

IL-23, and IL-10. TGF-b has the potential to reprogram appar-

ently differentiated Th cells into a new functional subset

producing IL-9 (Veldhoen et al., 2008; Dardalhon et al., 2008).

Thus it is possible that effector T cells within mucosal tissues

exhibit a degree of plasticity that is influenced by TGF-b. In the

context of allergic pulmonary inflammation, it may mean that it

is possible to redirect allergen-specific T cell responses with

immunotherapy in order to alleviate symptoms.

Although TGF-b exerts a suppressive activity on many immune

processes, it also plays a vital role in promoting the structural

changes of tissue remodeling. Some of the functions of TGF-b

that contribute to subepithelial fibrosis include amplification of

fibroblast proliferation and differentiation as well as induction

of the expression of collagen and other ECM proteins (Makinde

et al., 2007). TGF-b induces apoptosis of airway epithelial cells

and is potentially involved in the regulation of the adhesion prop-

erties of epithelial cells leading to damage of the epithelial layer
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 443
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Figure 2. Effect of Current Asthma
Treatments on Regulatory Pathways
Regulatory T cells inhibit effector T cells, antigen-
presenting cells, and cells of the innate immune
response associated with the asthmatic reaction.
Corticosteroids, a key treatment for asthma, are
associated with the upregulation of both Foxp3+

Treg cells and IL-10 production by CD4+ T cells.
Allergen immunotherapy has also been associated
with an increase in allergen-specific IL-10-
secreting Treg cells. More recent data suggest
that Foxp3+ Treg cells may also be increased by
this treatment. Vitamin D may both directly
increase IL-10 and also enhance steroid-induced
IL-10 production. Both Foxp3+ and IL-10+

(Foxp3-negative and -positive) Treg cell popula-
tions are likely to use additional inhibitory mecha-
nisms including cell-contact-dependent pathways
and cytotoxicity.
(Szefler, 2005). TGF-b has been shown to play a role in enhance-

ment of goblet cell proliferation and mucus secretion (Makinde

et al., 2007; McMillan et al., 2005). It also causes airway smooth

muscle (ASM) proliferation and contributes to increased ASM

cell mass (Makinde et al., 2007). Asthmatic patients show

increased TGF-b expression in both bronchial biopsy sections

and BAL in comparison to normal subjects, and expression

correlated with the depth of subepithelial fibrosis (Doherty and

Broide, 2007). Neutralization of TGF-b in two different models

of chronic allergen challenge reduced airway remodeling in

one study where sensitization occurred via the peritoneum

(McMillan et al., 2005), but did not affect remodeling and wors-

ened inflammation and AHR in a second (Fattouh et al., 2008)

in which unsensitized mice inhaled HDM. The differing outcome

of these studies highlights the use of a model where the initial

encounter with allergen is via the lung epithelium, and therefore

the first encounter with the immune system is via the pulmonary

dendritic cell network. Furthermore, they highlight the com-

plexity of targeting TGF-b with the potential for differing out-

comes on remodeling versus immune function.

TGF-b is a member of a complex superfamily, and the poten-

tial of other key members of the family to control immune

responses versus repair and remodeling in the lung have yet to

be explored. The TGF superfamily of molecules incorporates

three TGF-b isoforms, the bone morphogenic proteins (BMPs),

as well as activins, all of which have a diverse array of functions

including organogenesis, immune regulation, and wound repair.

Activin A has been postulated to provide a link between acute

allergen-specific T cell responses and chronic TGF-b1-mediated

airway remodeling in asthma (Karagiannidis et al., 2006). A re-

cent study has determined that activin-A suppresses antigen-

specific Th2 cell responses and protects against AHR and

allergic inflammation in mice (Semitekolou et al., 2009). Interest-

ingly, activin-A was shown to exert this suppressive function via

induction of antigen-specific regulatory T cells that suppressed

Th2 cell responses in vitro and upon transfer in vivo. At present

there is little information regarding the role of the BMP family in

regulation. However, there is evidence that allergen provocation

activates BMP signaling and receptor expression in allergic asth-
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matics, implying that this arm of the TGF-b family may also exert

influence over regulation and repair in the lung (Kariyawasam

et al., 2008). Collectively, the data on TGF-b and family members

may imply that asthma is associated with aberrant wound repair

or failure to effectively resolve inflammation. Further investiga-

tion into the relationship between IL-10 and TGF-b-secreting

regulatory cells may provide some clues.

Evidence of the Impact of Therapies
on Treg Cell Numbers and Function
Certain treatments that ameliorate allergic and asthmatic symp-

toms are associated with increased or restored Treg cell function

(Figure 2). A striking example of this is allergen immunotherapy,

which involves the administration of increasing doses of allergen

to which an individual is sensitized, under carefully controlled

clinical conditions, in order to induce a state of immune tolerance

to the allergen (Akdis and Akdis, 2007; Till et al., 2004). It requires

several years of administration for maximal efficacy, is only

effective in certain patient groups, and can be associated with

adverse events, including systemic anaphylaxis, and so is not

without serious risk in asthmatic patients. Importantly, allergen

immunotherapy in allergic children has been shown to reduce

the subsequent incidence of asthma (Moller et al., 2002). Immu-

nological studies in allergic patients have demonstrated that

immunotherapy inhibits allergen-specific Th2 cell responses

and promotes an increased frequency of IL-10-secreting Treg

cells that occurs quite rapidly after immunotherapy and is fol-

lowed by an increase in circulating IgG4, known to be regulated

by IL-10 (Akdis and Akdis, 2007; Till et al., 2004). This IL-10

phenotype is analogous to that seen in healthy nonatopic donors

upon exposure to allergen (Akdis et al., 2004) and in individuals

who demonstrate natural tolerance to allergen (Meiler et al.,

2008). At least two recent studies now also demonstrate that

allergen immunotherapy is associated with changes in Foxp3+

Treg cells. In one study of rush venom immunotherapy, a

progressive increase in CD4+CD25hiFoxp3+ T cells was reported

that was positively correlated with allergen-specific IgG4/IgE

ratio (Pereira-Santos et al., 2008). A second study looked directly

in the nasal mucosa of hay fever patients, demonstrating that
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after grass pollen immunotherapy, Foxp3+CD25+CD3+ cells

were increased, some of which also coexpressed IL-10 (Radu-

lovic et al., 2008). Additional reports of changes in IFN-g and

a report of increased TGF-b after immunotherapy also exist

(reviewed in Akdis and Akdis, 2007).

A number of strategies are being investigated to improve the

safety and efficacy of allergen IT, which are likely to enhance

its applicability to asthma. One approach has been to use

allergen-derived peptides containing T cell epitopes, which

lack IgE binding sequences in order to reduce adverse reactions

mediated via IgE cross linking of mast cells. Although intradermal

administration of these peptides still unexpectedly elicited iso-

lated late asthmatic reactions (LAR) in around 25% of patients,

this was followed by a period of bronchial hyporesponsiveness

to peptide (Haselden et al., 1999). These studies have high-

lighted that peptide immunotherapy in cat-allergic, asthmatic

patients is associated with downregulation of Th2 cell responses

to whole allergen and the induction of antigen-specific T regula-

tory cell pathways associated with increased IL-10 (Verhoef

et al., 2005). A mouse model designed specifically to mimic the

human protocol determined that peptide immunotherapy gener-

ated CD4+IL-10+ cells and tolerance to subsequent allergen

challenge was IL-10 dependent (Campbell et al., 2009). Future

initiatives are likely to include the use of lower doses of peptide

to minimize adverse events (reviewed in Larche, 2007). Other

approaches include the use of an anti-IgE, omalizumab, to

reduce circulating IgE titers with evidence for increased safety

of immunotherapy. Anti-IgE cross linking can provoke IL-10

synthesis by human blood monocytes (Novak et al., 2001), which

although unproven might contribute to greater efficacy. Other

strategies have utilized Toll-like receptor ligands to skew the

immunogenicity of allergen away from a Th2 cell response. For

example, the conjugation of immunostimulatory DNA to the short

ragweed allergen Amb a 1 enhanced its immunogenicity and

reduced its allergenicity in mice, rabbits, and monkeys (Tighe

et al., 2000), and this has now been tested in patients with

allergic rhinitis with evidence of improved efficacy over placebo

(Creticos et al., 2006). Considerable research interest remains in

identifying safer and more effective protocols for immunotherapy

likely to involve modified allergens, alternative routes of

administration, and novel adjuvants, which would increase their

applicability to severe asthmatics.

Asthma is routinely treated with broad-ranging anti-inflamma-

tory mediators, classically corticosteroids, which control symp-

toms in most patients. Several studies have demonstrated that

glucocorticoid treatment correlates with increased IL-10 and

Foxp3 gene and and/or protein expression in patients (reviewed

by Ryanna et al., 2009). Inhaled corticosteroids increase IL-10

synthesis and reduce proinflammatory cytokine production by

alveolar macrophages from adult asthma patients (John et al.,

1998), whereas a triamcinolone aerosol given to children with

moderate asthma doubled serum titers of IL-10 in parallel with

clinical improvement (Stelmach et al., 2002). Both inhaled and

systemic glucocorticoid treatment in moderate and severe asth-

matics have been shown to increase mRNA for Foxp3 and IL-10

in peripheral blood CD4+ T cells tested directly ex vivo (Karagian-

nidis et al., 2004). A further study importantly addressed this

at the active site of disease, demonstrating that isolated

CD4+CD25hi T cells from the BAL fluid (but not peripheral blood)
of asthmatic children were reduced in number and failed to

suppress proliferation and Th2 cytokine and chemokine produc-

tion by CD4+CD25� cells, as compared to children with cough or

controls. Importantly, inhaled corticosteroids reversed the

defect in CD4+CD25hi numbers and suppressive function (Hartl

et al., 2007).

IL-10 may contribute to the clinical efficacy of gluocorticoids in

asthma as suggested by a study where two groups of severe

asthma patients were compared, those responding well to

high-dose oral steroid trreatment for improved lung function

and those with no improvement. CD4+ T cells from the steroid-

refractory asthma patients showed an impaired in vitro response

to steroids for induction of IL-10 in comparison to cells from

the steroid-sensitive asthmatics (Hawrylowicz et al., 2002).

Glucocorticoids, in conjunction with 1a,25-dihydroxyvitmain

D3 (calcitriol), the active form of vitamin D, induce a population

of IL-10-secreting regulatory T cells in mice and humans (Barrat

et al., 2002). Calcitriol was subsequently shown to restore the

defective steroid-induced IL-10 synthesis of CD4+ T cells from

steroid refractory asthma patients (Xystrakis et al., 2006). This

occurred not only in vitro, but also after patient ingestion of

calcitriol at standard formulary doses, raising the possibility

that combined drug treatment might improve asthma control in

this important patient cohort. There is a growing awareness of

the prevalence of vitamin D insufficiency worldwide and its asso-

ciation with poor pulmonary function including asthma (Holick,

2007). This has fuelled a lively debate about the importance of

vitamin D sufficiency in maintaining, and possibly programming,

Treg cell populations important for pulmonary health, because

low dietary intake of vitamin D by pregnant women has been

associated with an increased incidence of wheeze in the

offspring at 3 and 5 years in 2 of 3 recent studies (Litonjua and

Weiss, 2007). In vitro studies demonstrate the capacity of vitamin

D to induce a tolerogenic dendritic cell phenotype with increased

IL-10, which promotes the generation of Foxp3+ Treg cells

(Penna et al., 2005), and also acts directly on human CD4+

T cells to induce IL-10+ Treg cells (Urry et al., 2009). Vitamin D

supplementation in multiple sclerosis patients increased serum

TGF-b (Mahon et al., 2003) and enhanced IL-10 and TNF/IL-10

ratios in a placebo-controlled study of vitamin D supplementa-

tion in patients with congestive heart failure (Schleithoff et al.,

2006). Administration of the pharmacologically active form calci-

triol to steroid-refractory asthma patients increased IL-10 mRNA

in CD3+CD4+ T cells tested pre- and postcalctriol ingestion,

directly ex vivo (Urry et al., 2009). In vivo studies in animal models

also identify a role for vitamin D in the induction of therapeutic

tolerance through the induction of both Foxp3 and IL-10 (re-

viewed in Adorini and Penna, 2008; Taher et al., 2008). These

data have led to the suggestion that vitamin D may contribute

to pulmonary health via the induction and/or maintenance of

essential Treg cell populations, which, coupled with the capacity

of vitamin D to promote antimicrobial pathways, might promote

homeostasis required for the unique pulmonary environment

(Adams and Hewison, 2008).

These data imply the capacity of broad-acting inhibitory medi-

ators such as corticosteroids or vitamin D to maintain, restore, or

enhance Treg cell function in asthma. Nevertheless, the capacity

to combine such treatments with an antigen-specific regimen

such as allergen immunotherapy may offer even greater benefit
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 445
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and safer application for the treatment of asthma. One example

of this is a study in allergic airway disease in mice, which showed

that 1a,25-dihydroxyvitamin D3 potentiated the beneficial

effects of allergen immunotherapy, facilitating the use of a lower

dose of antigen for the induction of inhalational tolerance after

sensitization, with a role for IL-10 and TGF-b (Taher et al.,

2008). Combining immunotherapy with glucocorticoids, vitamin

D, anti-IgE, or even microbial compounds offers the promise

to both increase the safety and improve the efficacy of IT in

asthma, an area that is being and will be addressed through

clinical trials.

Future Issues
Complex immunological mechanisms exist to maintain homeo-

stasis within the lung, with overwhelming evidence to suggest

that Treg cells are key players in this process. We need to

increase our understanding of these different immunological

mechanisms utilized by Treg cells in order to manipulate these

pathways for more effective therapy to treat asthmatic individ-

uals. This is likely to involve both novel strategies and improve-

ment of existing therapies such as allergen immunotherapy.

In addition to CD4+CD25+Foxp3+ Treg cells and IL-10-

secreting T cells, there is emerging evidence for other regulatory

cell populations in the lung. In humans, IL-10-secreting NK cells

can suppress antigen-specific effector function at least in vitro

(Deniz et al., 2008). CD8+ T cells have been shown to provide

effective, long-lasting memory responses in the lung, enhancing

Th1 over Th2 cell type immunity and preventing allergic sensitiza-

tion in a mouse model in vivo (Leggat et al., 2008). IL-17-pro-

ducing gd and NK cells have also been shown to have regulatory

activity during pulmonary infections, although their potential in

asthma has not yet been explored. Similarly, the regulatory

potential of human pulmonary gd cells and NK T cells has yet to

be investigated.

Regulatory cells in the lung do not always share characteristics

with those in the periphery, highlighting the importance of

studying lung-derived cells. Moreover, analysis of antigen-

specific Treg cells is likely to be far more informative and

emerging technology will facilitate this. T cell lineage commit-

ment may be less rigid than previously believed. Studies now

show that existing Th2 cells may be converted into alternative

CD4+ T helper cells expressing IL-9 and IL-10, depending on

the cytokine milieu (Dardalhon et al., 2008; Veldhoen et al.,

2008). This flexibility in T cell differentiation may explain downre-

gulation of Th2 cytokine production in vivo but it remains to be

seen whether this is a transient change in phenotype or if these

T cells are truly ‘‘reprogrammed.’’

Immune programming in the lung occurs early in life and expo-

sure to pathogens as well as dietary factors affect the TLR

patterning of the lung and development of pulmonary regulatory

pathways. Going forward it will be important to study these path-

ways in utero, in children, and in adults in order to boost host

regulatory pathways, particularly in individuals who have a

genetic susceptibility for asthma. Immune reprogramming in

early life remains an exciting prospect. Ultimately, a thorough

understanding of the nature of pulmonary immune homeostasis

will enable us to exploit these regulatory mechanisms to develop

novel and improved therapies for immune diseases such as

asthma.
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